Inastemp: A Novel Intrinsics-as-Template Library for Portable SIMD-Vectorization

Author:

Bramas Berenger1ORCID

Affiliation:

1. Max Planck Computing and Data Facility (MPCDF), Gieenbachstrae 2, 85748 Garching, Germany

Abstract

The development of scientific applications requires highly optimized computational kernels to benefit from modern hardware. In recent years, vectorization has gained key importance in exploiting the processing capabilities of modern CPUs, whose evolution is characterized by increasing register-widths and core numbers, but stagnating clock frequencies. In particular, vectorization allows floating point operations to be performed at a higher rate than the processor’s frequency. However, compilers often fail to vectorize complex codes and pure assembly/intrinsic implementations often suffer from software engineering issues, such as readability and maintainability. Moreover, it is difficult for domain scientists to write optimized code without technical support. To address these issues, we propose Inastemp, a lightweight open-source C++ library. Inastemp offers a solution to develop hardware-independent computational kernels for the CPU. These kernels are portable across compilers and floating point precision and vectorized targeting SSE(3,4.1,4.2), AVX(2), AVX512, or ALTIVEC/VMX instructions. Inastemp provides advanced features, such as an if-else statement that vectorizes branches that cannot be removed. Our performance study shows that Inastemp has the same efficiency as pure intrinsic approaches on modern architectures. As side-results, this study provides micro benchmarks on the latest HPC architectures for three different computational kernels, emphasizing comparisons between scalar and intrinsic-based codes.

Publisher

Hindawi Limited

Subject

Computer Science Applications,Software

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Autovesk: Automatic Vectorized Code Generation from Unstructured Static Kernels Using Graph Transformations;ACM Transactions on Architecture and Code Optimization;2023-12-15

2. Complexes++: Efficient and versatile coarse-grained simulations of protein complexes and their dense solutions;The Journal of Chemical Physics;2022-11-28

3. SIMDGiraffe: Visualizing SIMD Functions;Proceedings of the 16th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications;2021

4. TBFMM: A C++ generic and parallel fast multipole method library;Journal of Open Source Software;2020-12-03

5. Performance Evaluation of ParalleX Execution model on Arm-based Platforms;2020 IEEE International Conference on Cluster Computing (CLUSTER);2020-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3