Hierarchical Hybrid Trust Management Scheme in SDN-Enabled VANETs

Author:

Mao Ming1ORCID,Yi Peng1,Hu Tao1,Zhang Zhen1,Lu Xiangyu1,Lei Jingwei1

Affiliation:

1. People’s Liberation Army Strategic Support Force Information Engineering University, Zhengzhou 450001, China

Abstract

One of the principal missions of security in the Internet of Vehicles (IoV) is to establish credible social relationships. The trust management system has been proved to be an effective security solution in a connected vehicle environment. The use of trust management can play a significant role in achieving reliable data collection and dissemination and enhanced user security in the Internet of Vehicles. However, due to a large number of vehicles, the limited computing power of individuals, and the highly dynamic nature of the network, a universal and flexible architecture is required to realize the trust of vehicles in a dynamic environment. The existing solutions for trust management cannot be directly applied to the Internet of Vehicles. To ensure the safe transmission of data between vehicles and overcome the problems of high communication delay and low recognition rate of malicious nodes in the current trust management scheme, an efficient flow forwarding mechanism of the RSU close to the controller in the Software-Defined Vehicular Network is used to establish a hierarchical hybrid trust management architecture. This method evaluates the dynamic trust change of vehicle behavior based on the trust between vehicles and the auxiliary trust management of the infrastructure to the vehicle, combined with static and dynamic information and other indicators. The proposed trust management scheme is superior to the comparative schemes in resisting simple attacks, selective misbehavior attacks, and time-dependent attacks under the condition of ensuring superior real-time performance. Its overall accuracy is higher than that of the baseline scheme.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Computer Networks and Communications,Computer Science Applications

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3