Supplementation with Branched-Chain Amino Acids Induces Unexpected Deleterious Effects on Astrocyte Survival and Intracellular Metabolism with or without Hyperammonemia: A Preliminary In Vitro Study

Author:

Wang Ting12ORCID,Suzuki Kazuyuki1ORCID,Chiba Toshimi2,Kakisaka Keisuke1,Takikawa Yasuhiro1

Affiliation:

1. Division of Hepatology, Department of Internal Medicine, Iwate Medical University, Morioka, Iwate, Japan

2. Division of Internal Medicine, Department of Oral Medicine, Iwate Medical University, Morioka, Iwate, Japan

Abstract

Introduction. Ammonia is a key component in the pathogenesis of hepatic encephalopathy. Branched-chain amino acids (BCAA) have been reported to improve the symptoms of HE induced by hyperammonemia; however, we recently reported that ammonia increases intracellular levels of BCAA and exerts toxic effects on astrocytes. Objectives. This follow-up study was designed to confirm the direct effects of BCAA on human astrocytes and clarify their underlying mechanisms using metabolome analysis and evaluation of associated signaling. Methods. We performed cytotoxicity and cell proliferation tests on astrocytes following BCAA treatment with and without ammonium chloride (NH4Cl) and then compared the results with the effects of BCAA on hepatocytes and neurons. Subsequently, we used metabolomic analysis to investigate intracellular metabolite levels in astrocytes with and without BCAA treatment. Results. The astrocytes showed increased leakage of intracellular lactate dehydrogenase and reduced proliferation rate upon BCAA treatment. Interestingly, our analysis showed a BCAA-induced impairment of intracellular glycolysis/glyconeogenesis as well as amino acid and butyric acid metabolism. Furthermore, BCAA treatment was found to cause decreased levels of Glut-1 and phosphorylated GSK-3β and mTOR in astrocytes. Conclusions. Although further investigations of the effect of BCAA on human astrocytes with hyperammonemia are needed, our work demonstrates that BCAA supplementation has direct negative effects on astrocyte survival and intracellular metabolism.

Funder

Japan Society for the Promotion of Science

Publisher

Hindawi Limited

Subject

Hepatology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3