The Effects of Climate and Anthropogenic Activity on Hydrologic Features in Yanhe River

Author:

Cheng Yang1,He Hongming2,Cheng Nannan23,He Wenming4

Affiliation:

1. Department of Civil and Environmental Engineering, Syracuse University, Syracuse, NY 13210, USA

2. State Key Laboratory of Soil Erosion and Dryland Farming on Loess Plateau, Northwest of Agriculture & Forestry University and Institute of Soil and Water Conservation, Chinese Academy of Sciences & Ministry of Water Resources, Yangling, Shaanxi 712100, China

3. Graduate University, Chinese Academy of Sciences, Beijing 712100, China

4. School of Chemistry and Environment, Jiaying University, Guangdong, China

Abstract

This paper aims to analyze the effects of precipitation and anthropogenic activity on hydrologic features in Yanhe River so as to provide support for regional water management and evaluation of water and soil conservation measures. Thiessen Polygon was created to calculate mean values of watershed, and Mann-Kendall statistic test and Sen’s slop estimator test were adapted to analyze variation trend and interaction between precipitation, runoff, and sediment discharge. When 1961~1970 was set as reference period (ignoring human effects), the double mass curve quantified the effects of precipitation and anthropogenic activity on runoff and sediment discharge in Yanhe River during 1961~2008. The result showed that the monthly distribution of precipitation, runoff, and sediment discharge was extremely uneven. 78.1% of precipitation, 64.1% of runoff, and 98.6% of sediment discharge occurred in the flood season. Precipitation, runoff, and sediment discharge performed significant downward trends during 1961–2008. Therein, anthropogenic factors contributed 66.7% and 51.1% to sediment discharge reduction during 1971–1994 and 1995–2008, respectively. They contributed 103.8% and 82.9% to runoff reduction during these two periods, respectively.

Funder

Chinese Academy of Sciences

Publisher

Hindawi Limited

Subject

Atmospheric Science,Pollution,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3