tRNA-Derived Fragments Target the Ribosome and Function as Regulatory Non-Coding RNA inHaloferax volcanii

Author:

Gebetsberger Jennifer12ORCID,Zywicki Marek34,Künzi Andrea1,Polacek Norbert13

Affiliation:

1. Department of Chemistry and Biochemistry, University of Bern, Freiestraße 3, 3012 Bern, Switzerland

2. Graduate School for Cellular and Biomedical Sciences, University of Bern, 3012 Bern, Switzerland

3. Division of Genomics and RNomics, Innsbruck Biocenter, Innsbruck Medical University , Innrain 80/82, 6020 Innsbruck, Austria

4. Laboratory of Computational Genomics, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, 61-712 Poznan, Poland

Abstract

Nonprotein coding RNA (ncRNA) molecules have been recognized recently as major contributors to regulatory networks in controlling gene expression in a highly efficient manner. These RNAs either originate from their individual transcription units or are processing products from longer precursor RNAs. For example, tRNA-derived fragments (tRFs) have been identified in all domains of life and represent a growing, yet functionally poorly understood, class of ncRNA candidates. Here we present evidence that tRFs from the halophilic archaeonHaloferax volcaniidirectly bind to ribosomes. In the presented genomic screen of the ribosome-associated RNome, a 26-residue-long fragment originating from the 5′ part of valine tRNA was by far the most abundant tRF. The Val-tRF is processed in a stress-dependent manner and was found to primarily target the small ribosomal subunitin vitroandin vivo. As a consequence of ribosome binding, Val-tRF reduces protein synthesis by interfering with peptidyl transferase activity. Therefore this tRF functions as ribosome-bound small ncRNA capable of regulating gene expression inH. volcaniiunder environmental stress conditions probably by fine tuning the rate of protein production.

Funder

Austrian Science Fund

Publisher

Hindawi Limited

Subject

Ecology, Evolution, Behavior and Systematics,Physiology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3