Automatic Defect Detection in Spring Clamp Production via Machine Vision

Author:

Zhu Xia12,Chen Renwen1,Zhang Yulin2

Affiliation:

1. State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

2. Faculty of Electronic and Electrical Engineering, Huaiyin Institute of Technology, Huaian 223003, China

Abstract

There is an increasing demand for automatic online detection system and computer vision plays a prominent role in this growing field. In this paper, the automatic real-time detection system of the clamps based on machine vision is designed. It hardware is composed of a specific light source, a laser sensor, an industrial camera, a computer, and a rejecting mechanism. The camera starts to capture an image of the clamp once triggered by the laser sensor. The image is then sent to the computer for defective judgment and location through gigabit Ethernet (GigE), after which the result will be sent to rejecting mechanism through RS485 and the unqualified ones will be removed. Experiments on real-world images demonstrate that the pulse coupled neural network can extract the defect region and judge defect. It can recognize any defect greater than 10 pixels under the speed of 2.8 clamps per second. Segmentations of various clamp images are implemented with the proposed approach and the experimental results demonstrate its reliability and validity.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Applied Mathematics,Analysis

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Computer Vision Techniques in Manufacturing;IEEE Transactions on Systems, Man, and Cybernetics: Systems;2023-01

2. Inspecting spring clamp dimensions with machine vision;Journal of Physics: Conference Series;2019-08-01

3. Intelligent Machine Vision Based Modeling and Positioning System in Sand Casting Process;Advances in Materials Science and Engineering;2017

4. A hardware solution for real-time image acquisition systems based on GigE camera;Journal of Real-Time Image Processing;2015-12-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3