Fractal and Morphological Characteristics of Single Marble Particle Crushing in Uniaxial Compression Tests

Author:

Wang Yidong1,Dan Wenjiao2,Xu Yongfu1,Xi Yue1

Affiliation:

1. Department of Civil Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

2. Department of Engineering Mechanics, Shanghai Jiao Tong University, Shanghai 200240, China

Abstract

Crushing of rock particles is a phenomenon commonly encountered in geotechnical engineering practice. It is however difficult to study the crushing of rock particles using classical theory because the physical structure of the particles is complex and irregular. This paper aims at evaluating fractal and morphological characteristics of single rock particle. A large number of particle crushing tests are conducted on single rock particle. The force-displacement curves and the particle size distributions (PSD) of crushed particles are analysed based on particle crushing tests. Particle shape plays an important role in both the micro- and macroscale responses of a granular assembly. The PSD of an assortment of rocks are analysed by fractal methods, and the fractal dimension is obtained. A theoretical formula for particle crushing strength is derived, utilising the fractal model, and a simple method is proposed for predicting the probability of particle survival based on the Weibull statistics. Based on a few physical assumptions, simple equations are derived for determining particle crushing energy. The results of applying these equations are tested against the actual experimental data and prove to be very consistent. Fractal theory is therefore applicable for analysis of particle crushing.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Engineering,General Materials Science

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Mechanical Characteristics and Energy Evolution of Limestone Under the Action of Acid Corrosion;Iranian Journal of Science and Technology, Transactions of Civil Engineering;2024-05-27

2. Survey of Particle Strength Distributions;Particle Strengths;2023-02-04

3. Particles in Diametral Compression;Particle Strengths;2023-02-04

4. Experimental studies on shape and size effects on particle breakage of railway ballast;Transportation Geotechnics;2022-11

5. Study on Rheological Characteristics of Uncemented Coal Gangue-Fly Ash Backfill (UCGFB) Slurry Based on Fractal Theory;Advances in Materials Science and Engineering;2022-10-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3