Radio Refractivity Impact on Signal Strength of Mobile Communication

Author:

Amajama Joseph1,Asagha Emmanuel N.1,Ushie Ogri J.1,Iwuji Prince C.1,Akwagiobe Julius U.1,Faithpraise Fina O.1,Ikeuba Alexander I.1ORCID,Bassey Donatus E.1

Affiliation:

1. University of Calabar, Calabar, Nigeria

Abstract

This research investigated radio refractivity impact on signal strength of mobile communication. The mobile communication signal strengths of two popular networks in Nigeria, 9Mobile and MTN, were considered. In the 2100 MHz-3 G band, 9Mobile transmits in the downlink spectrum of 2130.00–2140.00 MHz, while MTN transmits in the downlink spectrum of 2110.00–2120.00 MHz. Also, 9Mobile transmits in the downlink spectrum of 791–821 MHz in the 800 MHz band and 1805–1880 MHz in the 1800 MHz, while MTN transmits in the downlink spectrums of 2620–2690 MHz in the 2600 MHz band; all in the 4 G band. Using the instrument of a mobile station in each station (location) in some selected cities in southern Nigeria, the signal strengths were measured. A cell signal monitor (version 5.1.1) mobile application installed in an Android (transceiver) device (having two SIM slots) constituted the mobile station. To achieve high accuracy, there was a restriction in measuring transmission from specific cells. Hourly measurement of signal strengths was carried out and instantaneously corresponding weather parameters were recorded. Weather parameters for this investigation; atmospheric temperature and pressure; and relative humidity were excerpted online from the Nigeria Meteorological Agency (NIMET) hourly weather report for the various cities where the stations were situated. The hourly radio refractivity was computed using the 2015 International Telecommunication Union–Radio-communication sector (ITU-R) recommended model. Overall, the results indicate that there was no established linear relationship between signal strength and radio refractivity since the overall average R value is 0.0123691 and the overall average standard deviation of R values is 0.1112165. The inconsistencies in the linear relationships obtained from different locations and cells could be due to variations in topography, antenna properties, seasonal variations, wind and position, and distance of the receiver from the transmitter.

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,General Computer Science,Signal Processing

Reference109 articles.

1. Assessment of radio refractivity and frequency modulated radio signal strength variability with time in broadcasting system using Osun State Broadcasting Cooperation (OSBC), FM 104.5 MHz as a reference station;T. O. Familusi;International Journal of Innovative Science and Research Technology,2022

2. A Review on the Effects of Radio Refractivity and Atmospheric Parameters on Signal Quality at Ultra High Frequency (UHF)

3. The Effect of Refractivity on Propagation at UHF and VHF Frequencies

4. Impact of weather components on (UHF) radio signal;J. Amajama;International Journal of Engineering Research and General Science,2016

5. Northeast monsoon effect on ultra high frequency (UHF) signal attenuation at kusza observatory;H. N. Sabri;IOP Conference Series: Journal of Physics: Conference Series,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3