Human-Machine Interface for a Smart Wheelchair

Author:

Hartman Amiel1,Nandikolla Vidya K.1ORCID

Affiliation:

1. College of Engineering and Computer Science, California State University at Northridge, CA, USA

Abstract

The paper describes the integration of hardware and software with sensor technology and computer processing to develop the next generation intelligent wheelchair. The focus is a computer cluster design to test high performance computing for smart wheelchair operation and human interaction. The LabVIEW cluster is developed for real-time autonomous path planning and sensor data processing. Four small form factor computers are connected over a Gigabit Ethernet local area network to form the computer cluster. Autonomous programs are distributed across the cluster for increased task parallelism to improve processing time performance. The distributed programs operating frequency for path planning and motion control is 50Hz and 12.3Hz for 0.3 megapixel robot vision system. To monitor the operation and control of the distributed LabVIEW code, network automation is integrated into the cluster software along with a performance monitor. A link between the computer motion control program and the wheelchair joystick control of the drive train is developed for the computer control interface. A perception sensor array and control circuitry is integrated with the computer system to detect and respond to the wheelchair environment. Multiple cameras are used for image processing and scanning laser rangefinder sensors for obstacle avoidance in the cluster program. A centralized power system is integrated to power the smart wheelchair along with the cluster and sensor feedback system. The on board computer system is evaluated for cluster processing performance for the smart wheelchair, incorporating camera machine vision and LiDAR perception for terrain obstacle detection, operating in urban scenarios.

Publisher

Hindawi Limited

Subject

General Computer Science,Control and Systems Engineering

Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Smart Electronic Wheelchair Design Using Artificial Intelligence and Intelligent Sensors Association;2024 International Conference on Intelligent and Innovative Technologies in Computing, Electrical and Electronics (IITCEE);2024-01-24

2. Smart Wheelchair Controlled Through a Vision-Based Autonomous System;IEEE Access;2024

3. Research on MI EEG signal classification algorithm using multi-model fusion strategy coupling;Computer Methods in Biomechanics and Biomedical Engineering;2023-11-20

4. Towards Comfortable and Socially Acceptable Navigation in Autonomous Motorized Wheelchairs;2023 Latin American Robotics Symposium (LARS), 2023 Brazilian Symposium on Robotics (SBR), and 2023 Workshop on Robotics in Education (WRE);2023-10-09

5. Design & Implementation of Novel AI Based Hand Gestured Smart Wheelchair;2023 International Conference on Applied Intelligence and Sustainable Computing (ICAISC);2023-06-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3