Design and Application of Blasting Parameters for Presplitting Hard Roof with the Aid of Empty-Hole Effect

Author:

Chen Baobao12ORCID,Liu Changyou12ORCID,Yang Jingxuan12ORCID

Affiliation:

1. Key Laboratory of Deep Coal Resource Mining, Ministry of Education of China, School of Mines, China University of Mining and Technology, Xuzhou 221116, China

2. State Key Laboratory of Coal Resource and Mine Safety, Xuzhou 221116, China

Abstract

Theoretical calculation and numerical simulation were performed to analyze the mechanism of rock fracturing between holes in deep-hole presplit blasting, crack evolution under the synergistic action of dynamic and static loads, and the mechanism of fracture movement guided by tangential stress concentration of empty holes. The pattern and characteristic zones of main and wing cracks across a cross section were identified. Combined with blast dynamics, the scope of stress-induced cracks around blast holes and the maximum length of secondary cracks induced by detonation gas was calculated. It was found that the initiation and extension of cracks were oriented predominantly along the line passing through the hole centers (LPTHC). Moreover, the maximum length of the tensile crack zone induced by reflected stress waves was obtained. The effects of empty-hole diameter and charge coefficient on crack propagation were analyzed, and the proper blast-hole spacing was determined. Later, a LS-DYNA3D blast model was used to illustrate von Mises stress propagation, strain variation, and evolution of main and wing cracks between holes. The scope of strain failure, fracture pattern, and crack characteristic zones in the rock mass was determined. The results demonstrate that the hole spacing, at 3.2 m, is reasonable. Furthermore, blasting parameters were determined for 8939 working face at Xinzhouyao Mine and then deep-hole blasting was implemented to presplit the hard roof. After presplitting, the working resistance of supports was significantly reduced, thereby achieving effective control on the hard roof.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3