On the Secrecy Performance of SWIPT Receiver Architectures with Multiple Eavesdroppers

Author:

Jameel Furqan1,Wyne Shurjeel1ORCID,Junaid Nawaz Syed1,Ahmed Junaid1ORCID,Cumanan Kanapathippillai2

Affiliation:

1. Department of Electrical Engineering, COMSATS Institute of Information Technology, Islamabad 45550, Pakistan

2. Department of Electronic Engineering, University of York, Heslington, York, YO10 5DD, UK

Abstract

Physical layer security (PLS) has been shown to hold promise as a new paradigm for securing wireless links. In contrast with the conventional cryptographic techniques, PLS methods exploit the random fading in wireless channels to provide link security. As the channel dynamics prevent a constant rate of secure communications between the legitimate terminals, the outage probability of the achievable secrecy rate is used as a measure of the secrecy performance. This work investigates the secrecy outage probability of a simultaneous wireless information and power transfer (SWIPT) system, which operates in the presence of multiple eavesdroppers that also have the energy harvesting capability. The loss in secrecy performance due to eavesdropper collusion, i.e., information sharing between the eavesdroppers to decode the secret message, is also analyzed. We derive closed-form expressions for the secrecy outage probability for Nakagami-m fading on the links and imperfect channel estimation at the receivers. Our analysis considers different combinations of the separated and the integrated SWIPT receiver architectures at the receivers. Numerical results are provided to validate our analysis.

Funder

EU

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3