Intracerebral Transplantation of Mesenchymal Stromal Cell Compounded with Recombinant Peptide Scaffold against Chronic Intracerebral Hemorrhage Model

Author:

Takamiya Soichiro1,Kawabori Masahito1ORCID,Kitahashi Tsukasa2,Nakamura Kentaro2,Mizuno Yuki3ORCID,Yasui Hironobu34,Kuge Yuji3,Tanimori Aki1,Takamatsu Yasuyuki5ORCID,Yuyama Kohei6,Shichinohe Hideo7,Fujimura Miki1

Affiliation:

1. Department of Neurosurgery, Graduate School of Medicine, Hokkaido University, Sapporo, Japan

2. Bioscience & Engineering Laboratory, FUJIFILM Corporation, Kanagawa, Japan

3. Central Institute of Isotope Science, Hokkaido University, Sapporo, Japan

4. Department of Applied Veterinary Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan

5. Department of Rehabilitation Science, Faculty of Health Sciences, Hokkaido University, Sapporo, Japan

6. Lipid Biofunction Section, Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan

7. Institute of Health Science Innovation for Medical Care, Hokkaido University Hospital, Sapporo, Japan

Abstract

Background. Due to the lack of effective therapies, stem cell transplantation is an anticipated treatment for chronic intracerebral hemorrhage (ICH), and higher cell survival and engraftment are considered to be the key for recovery. Mesenchymal stromal cells (MSCs) compounded with recombinant human collagen type I scaffolds (CellSaics) have a higher potential for cell survival and engraftment compared with solo-MSCs, and we investigated the validity of intracerebral transplantation of CellSaic in a chronic ICH model. Methods. Rat CellSaics (rCellSaics) were produced by rat bone marrow-derived MSC (rBMSCs). The secretion potential of neurotrophic factors and the cell proliferation rate were compared under oxygen-glucose deprivation (OGD) conditions. rCellSaics, rBMSCs, or saline were transplanted into the hollow cavity of a rat chronic ICH model. Functional and histological analyses were evaluated, and single-photon emission computed tomography for benzodiazepine receptors was performed to monitor sequential changes in neuronal integrity. Furthermore, human CellSaics (hCellSaics) were transplanted into a chronic ICH model in immunodeficient rats. Antibodies neutralizing brain-derived neurotrophic factor (BDNF) were used to elucidate its mode of action. Results. rCellSaics demonstrated a higher secretion potential of trophic factors and showed better cell proliferation in the OGD condition. Animals receiving rCellSaics displayed better neurological recovery, higher intracerebral BDNF, and better cell engraftment; they also showed a tendency for less brain atrophy and higher benzodiazepine receptor preservation. hCellSaics also promoted significant functional recovery, which was reversed by BDNF neutralization. Conclusion. Intracerebral transplantation of CellSaics enabled neurological recovery in a chronic ICH model and may be a good option for clinical application.

Funder

Japan Society for the Promotion of Science

Publisher

Hindawi Limited

Subject

Cell Biology,Molecular Biology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3