Applying Deep Neural Networks over Homomorphic Encrypted Medical Data

Author:

Vizitiu Anamaria12ORCID,Niƫă Cosmin Ioan12,Puiu Andrei12,Suciu Constantin12,Itu Lucian Mihai12ORCID

Affiliation:

1. Department of Automation and Information Technology, Transilvania University of Braşov, Braşov, Romania

2. Corporate Technology, Siemens SRL, Braşov, Romania

Abstract

In recent years, powered by state-of-the-art achievements in a broad range of areas, machine learning has received considerable attention from the healthcare sector. Despite their ability to provide solutions within personalized medicine, strict regulations on the confidentiality of patient health information have in many cases hindered the adoption of deep learning-based solutions in clinical workflows. To allow for the processing of sensitive health information without disclosing the underlying data, we propose a solution based on fully homomorphic encryption (FHE). The considered encryption scheme, MORE (Matrix Operation for Randomization or Encryption), enables the computations within a neural network model to be directly performed on floating point data with a relatively small computational overhead. We consider the well-known MNIST digit recognition problem to evaluate the feasibility of the proposed method and show that performance does not decrease when deep learning is applied on MORE homomorphic data. To further evaluate the suitability of the method for healthcare applications, we first train a model on encrypted data to estimate the outputs of a whole-body circulation (WBC) hemodynamic model and then provide a solution for classifying encrypted X-ray coronary angiography medical images. The findings highlight the potential of the proposed privacy-preserving deep learning methods to outperform existing approaches by providing, within a reasonable amount of time, results equivalent to those achieved by unencrypted models. Lastly, we discuss the security implications of the encryption scheme and show that while the considered cryptosystem promotes efficiency and utility at a lower security level, it is still applicable in certain practical use cases.

Funder

European Union’s Horizon 2020 Programme

Publisher

Hindawi Limited

Subject

Applied Mathematics,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,Modeling and Simulation,General Medicine

Cited by 41 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3