Heel-Strike and Toe-Off Detection Algorithm Based on Deep Neural Networks Using Shank-Worn Inertial Sensors for Clinical Purpose

Author:

Skvortsov Dmitry1ORCID,Chindilov Denis2,Painev Nikita2,Rozov Alexey2

Affiliation:

1. Pirogov Russian National Research Medical University, Moscow 101000, Russia

2. Neurosoft LLC, Ivanovo 153000, Russia

Abstract

A foot placement of inertial sensors is commonly used for heel-strike (HS) and toe-off (TO) event detection. However, in clinical practice, such sensor placement may be difficult or even impossible due to the deformity of patients’ feet. The first contribution of this paper is a new algorithm for HS and TO event detection for cases when the sensors are placed on the lateral malleolus. Such sensor placement allows gait analysis in patients with foot deformities. In addition, the placement of the sensor directly on the wide bone surface of the lateral malleolus ensures secure fixation of the sensor during walking. The proposed algorithm is based on deep neural networks, which can be easily adapted (by retraining the neural networks) for analysis of various pathological gait patterns. It is especially important in clinical practice when the number of possible pathological gait patterns is very large. The algorithm proposed in this paper was implemented in a new wearable system for the clinical gait analysis. The second contribution is a validation of this new wearable system. The performance of both proposed algorithm and gait analysis system was evaluated against a reference treadmill system where a capacitance–based pressure platform was used. A total of 117 healthy volunteers participated in the comparison (62 males and 55 females, age 24–55 years, height 162–183 cm). They were asked to perform 2 min walking trials with different speed. Mean accuracy ± precision was 0.021 ± 0.091  s for gait cycle, 0.589 ± 1.144 steps/min for cadence, 0.051 ± 0.544 % for stance phase, 0.37 ± 0.649 % for single support, 0.296 ± 0.711 % for double support, 0.132 ± 0.561 % for load response, and 0.106 ± 0.661 % for preswing. Limitations of the proposed algorithm and its compassion with state-of-the-art algorithms were discussed.

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Instrumentation,Control and Systems Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3