Affiliation:
1. Department of Nephropathy, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang 310012, China
2. School of Micro-Nanoelectronics, Zhejiang University, Hangzhou, Zhejiang 310058, China
3. Network Information Center, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang 310012, China
Abstract
Objective. To establish a prediction model for the risk evaluation of chronic kidney disease (CKD) to guide the management and prevention of CKD. Methods. A total of 1263 patients with CKD and 1948 patients without CKD admitted to the Tongde Hospital of the Zhejiang Province from January 1, 2008, to December 31, 2018, were retrospectively analyzed. Spearman’s correlation was used to analyze the relationship between CKD and laboratory parameters. XGBoost, random forest, Naive Bayes, support vector machine, and multivariate logistic regression algorithms were employed to establish prediction models for the risk evaluation of CKD. The accuracy, precision, recall, F1 score, and area under the receiver operating curve (AUC) of each model were compared. The new bidirectional encoder representations from transformers with light gradient boosting machine (MD-BERT-LGBM) model was used to process the unstructured data and transform it into researchable unstructured vectors, and the AUC was compared before and after processing. Results. Differences in laboratory parameters between CKD and non-CKD patients were observed. The neutrophil ratio and white blood cell count were significantly associated with the occurrence of CKD. The XGBoost model demonstrated the best prediction effect (accuracy = 0.9088, precision = 0.9175, recall = 0.8244, F1 score = 0.8868, AUC = 0.8244), followed by the random forest model (accuracy = 0.9020, precision = 0.9318, recall = 0.7905, F1 score = 0.581, AUC = 0.9519). Comparatively, the predictions of the Naive Bayes and support vector machine models were inferior to those of the logistic regression model. The AUC of all models was improved to some extent after processing using the new MD-BERT-LGBM model. Conclusion. The new MD-BERT-LGBM model with the inclusion of unstructured data has contributed to the higher accuracy, sensitivity, and specificity of the prediction models. Clinical features such as age, gender, urinary white blood cells, urinary red blood cells, thrombin time, serum creatinine, and total cholesterol were associated with CKD incidence.
Funder
Natural Science Foundation of Zhejiang Province
Subject
Complementary and alternative medicine
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献