Design and Optimization of E-Commerce Logistics Distribution System Based on Multiobjective Function

Author:

Wen Hui1ORCID

Affiliation:

1. Henan Institute of Economics and Trade, Zhengzhou 450046, Henan, China

Abstract

To reduce the complexity and multiple constraints of logistics distribution routing problems, the author proposes an improved genetic algorithm, adaptive immune genetic algorithm (AIGA). The algorithm utilizes a new immune vaccine selection strategy and immune operation method, the optimization process is adaptively changed with the evolutionary algebra, combined with the parallel selection method to optimize the multiobjective logistics distribution path, and the specific steps to solve the multiobjective logistics distribution path problem are given. The experimental results show that the optimal path is calculated as 0—2—8—5—3—1—0; 0—4—7—6—0. AIGA not only efficiently converges to the optimal solution but also stabilizes to a fitness value of 66.5, reflecting better precision than IGA. The computational efficiency and convergence of the algorithm are significantly improved, which verifies the practicability and effectiveness of the algorithm. The adaptive immune genetic algorithm realizes the path optimization of complex logistics distribution, which can better change the global search performance of the original immune genetic algorithm, greatly improve the algorithm convergence speed, and achieve good results in practical applications.

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Computer Science Applications,Modeling and Simulation

Reference21 articles.

1. Restoration of the network for next generation (5g) optical communication network;D. Kumar

2. Logisticschain: a blockchain-based secure storage scheme for logistics data;H. Li;Mobile Information Systems,2021

3. Improving Throughput of 5G Cellular Networks via 3D Placement Optimization of Logistics Drones

4. Autonomous Last-Mile Delivery Based on the Cooperation of Multiple Heterogeneous Unmanned Ground Vehicles

5. Unmanned technology-based civil-military intelligent logistics system: from construction to integration;Z. Sun;Journal of Beijing Institute of Technology (Social Sciences Edition),2022

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3