Mathematical Problems in Engineering Improved CNP-Method-Based Local Real-Time Cooperative Task Allocation of Heterogeneous Multi-UAV in Communication-Constrained Environment

Author:

Xie Tao1,Guo Jiansheng1,Zhang Xiaofeng1ORCID,Yu Jiayang1,zhang Zhe2

Affiliation:

1. Equipment Management and UAV Engineering College, Air Force Engineering University, Xi’an 710051, China

2. Air Traffic and Navigation College, Air Force Engineering University, Xi’an 710051, China

Abstract

UAVs are widely employed in military and civilian fields because of their inherent advantages. The cooperative task allocation of multi-UAV is more in conformity with the requirements of UAV application scenarios, which has become a hot research topic. However, resource consumption allocation and the application scenarios of communication constraints are often ignored. This paper proposes a distributed multi-UAV task allocation method based on improved CNP to solve the local cooperative task allocation problem of heterogeneous multi-UAV in the communication-constrained environment. The improved CNP-based method can be divided into four stages: task release, bid application, coalition formation, and signing contracts. In the task release stage, we proposed the adaptive maximum number setting method of information transfer times and the information consistency method to solve conflicts in the local communication network. In the process of coalition formation, the resource consumption allocation algorithm based on the Gini coefficient is proposed to keep the resource difference between UAVs in the coalition within a reasonable range. The simulation results demonstrate that improved CNP-method-based cooperative task allocation can handle the local real-time task allocation problem of heterogeneous multi-UAV under communication constraints; it obtains greater task rewards and spends less time on task completion than the resource-welfare-based method, PTCFA. Simultaneously, the resource consumption algorithm makes the UAV swarm maintain a more reasonable resource difference to maximize the number of missions completed.

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3