Pitch Evaluation of Matouqin Chamber Music Performance Based on Artificial Neural Network

Author:

Hu Guangying1ORCID

Affiliation:

1. School of Art and Design the Inner Mongolia University of Science and Technology, Baotou 014010, Inner Mongolia, China

Abstract

In order to study the pitch evaluation of Matouqin chamber music performance based on artificial neural network, this paper puts forward the relevant theories in the fields of human ear auditory perception system, auditory psychology, music theory knowledge, and pattern recognition. This paper extracts the auditory image features of chords and then establishes a sparse representation classifier model for chord recognition and classification. Scale-invariant feature transformation (SIFT) and spatial pyramid matching (SPM) are used to extract the detailed features of chord auditory images. The experimental results show that the highest correct recognition rate of the chord recognition algorithm based on the auditory image proposed in this paper is 76.2%, which is 20.4% higher than that of MFCC feature based on human auditory characteristics.

Funder

Inner Mongolia Philosophy and Social Science Planning

Publisher

Hindawi Limited

Subject

Computer Networks and Communications,Computer Science Applications

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3