Dynamic Emergency Vehicle Path Planning and Traffic Evacuation Based on Salp Swarm Algorithm

Author:

Duan X. H.1ORCID,Wu J. X.2,Xiong Y. L.1

Affiliation:

1. School of Economics and Management, North China University of Technology, Beijing 100144, China

2. School of Electrical and Control Engineering, North China University of Technology, Beijing 100144, China

Abstract

In view of the rescue delay due to traffic congestion in the urban road network, this paper implemented real-time traffic control with congestion index constraints in emergency vehicle dispatching and proposed a two-stage optimization model and algorithm. In the first stage, salp swarm algorithm (SSA) was combined with Dijkstra algorithm, and a novel hybrid algorithm with new updating rules was designed to get the multiple alternative paths. In the second stage, an improved salp swarm algorithm (ISSA) with a population grouping strategy was proposed to obtain the best evacuation schemes and the optimal rescue paths of emergency vehicles. Results of the illustrative examples show that, after evacuation, the average travel time of all alternative paths is reduced by 24.22%, while traffic congestion indexes of the adjacent road sections almost unchanged. The computation time of the hybrid algorithm for obtaining the set number of alternative paths is 56.62% and 50.47% shorter than that of bat algorithm (BA) and SSA. For the solution of the evacuation model, the computation time of the ISSA is 33.51%, 30.15%, and 30.60% shorter than that of particle swarm optimization (PSO), BA, and SSA, and the optimal solution of the ISSA is 25.92%, 10.06%, and 0.97% better than that of PSO, BA, and SSA. That is, we shorten the emergency response time and control the adverse impact of traffic evacuation on background traffic. The improved algorithm has excellent performance. This study provides a new idea and method for emergency rescue of traffic accidents.

Funder

Humanities and Social Science Fund of Ministry of Education of China

Publisher

Hindawi Limited

Subject

Strategy and Management,Computer Science Applications,Mechanical Engineering,Economics and Econometrics,Automotive Engineering

Reference49 articles.

1. Probabilistic programming models for traffic incident management operations planning

2. YouY. S.The research of the urban expressway capacity and improvement measures after traffic accidents2014Xi’anChang’an UniversityM. S. dissertation

3. LiW.Army emergency resource scheduling problem under unconventional emergencies incident2016ChangshaNational University of Defense TechnologyM. S. dissertation

4. A decision support system for integrated hazardous materials routing and emergency response decisions

5. Applicability study of traffic rescue resource dispatch method on expressway;C. H. Zhu;China Safety Science Journal,2009

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3