Numerical Modeling of Water and Gas Transport in Compacted GMZ Bentonite under Constant Volume Condition

Author:

Liu Jiang-Feng12ORCID,Cao Xu-Lou1,Ni Hong-Yang1ORCID,Zhang Kai1ORCID,Ma Zhi-Xiao1,Ma Li-Ke3,Pu Hai1ORCID

Affiliation:

1. State Key Laboratory for Geomechanics and Deep Underground Engineering and School of Mechanics and Civil Engineering, China University of Mining and Technology, Xuzhou 221116, China

2. Key Laboratory of Geotechnical and Underground Engineering of Ministry of Education, Tongji University, Shanghai 200092, China

3. CNNC Beijing Research Institute of Uranium Geology (BRIUG), Beijing 100029, China

Abstract

During deep geological disposal of high-level and long-lived radioactive waste, underground water erosion into buffer materials, such as bentonite, and gas production around the canister are unavoidable. Therefore, understanding water and gas migration into buffer materials is important when it comes to determining the sealing ability of engineered barriers in deep geological repositories. The main aim of our study is to provide insights into the water/gas transport in a compacted bentonite sample under constant volume conditions. The results of our study indicate that water saturation is obtained after 450 hours, which is similar to experimental results. Gas migration testing shows that the degree of water saturation in the samples is very sensitive to the gas pressure. As soon as 2 MPa or higher gas pressure was applied, the water saturation degree decreased quickly. Laboratory experiments indicate that gas breakthrough occurs at 4 MPa, with water being expelled from the downstream side. This indicates that gas pressure has a significant effect on the sealing ability of Gaomizozi (GMZ) bentonite.

Funder

China University of Mining and Technology

Publisher

Hindawi Limited

Subject

General Earth and Planetary Sciences

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3