Research on the Artificial Intelligence Teaching System Model for Online Teaching of Classical Music under the Support of Wireless Networks

Author:

Yang Jipeng1ORCID

Affiliation:

1. Lu Xun College of Art, Yan’an University, Yan’an, Shaanxi 716000, China

Abstract

For the past year, everyone has been facing difficulties due to the fast spreading of the Corona Virus. As an extension, students, parents, and teachers are handling the challenges in the education sector. Since the COVID days, the schools and colleges were closed, and hence, the students were lagging in their subjects. As an alternative to this scenario, offline classes are converted to online courses, otherwise called virtual classes with virtual classrooms. Due to this conversion, the teaching has become a little more advanced by incorporating various computer-based technologies. The technologies like artificial intelligence, cloud computing, and machine learning paved the way for exploring concepts in data transmission in terms of timely delivery of content, less error rate, and nontechnical terms like making the classes interactive and understanding the subject concepts. In this research work, the online teaching class on music is considered. To be specific, traditional Chinese music is taken for the study. An artificial intelligence model is designed with the aid of wireless sensor networks for the online class on the musical subject. Q-learning algorithm, which is an artificial intelligence-based reinforcement learning algorithm, is implemented. The aim of the Q-learning algorithm in this online teaching of classical music is to check the frequency level of the music that aids in the automatic transfer of another wavelength inside the dataset.

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3