Affiliation:
1. Guangdong Nanhua Vocational College of Industry and Commerce, Guangzhou, Guangdong, China
2. Guangdong Vocational Institute of Sport, Guangzhou, Guangdong, China
Abstract
Under the global economy, enterprises in the financial industry are facing plenty of opportunities and severe challenges. Aimed at providing a reference enterprise performance evaluation system for related enterprises, the proposed model helps enterprises to learn and sort out their own performance evaluation system according to this structure. A prediction model of BP neural network (BPNN) based on the wireless network is studied as the performance data prediction algorithm. Firstly, the feasibility of this algorithm is analysed through prediction training. Secondly, the proposed neural network algorithm is compared with the traditional algorithm for data prediction. It turns out that this neural network prediction algorithm based on wireless communication is not only universal to the prediction data but also superior to the traditional prediction algorithm in both error gap and relative average error compared with other traditional algorithms. On this basis, the particle swarm optimization (PSO) algorithm is also used to evaluate the performance indicators of three enterprises, and accurate numerical values are obtained to express the corresponding results. Therefore, it is concluded that the subalgorithm can be applied to the enterprise performance evaluation team in the financial industry.
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献