Dynamic Surface Subsidence Characteristics due to Super-Large Working Face in Fragile-Ecological Mining Areas: A Case Study in Shendong Coalfield, China

Author:

Chen Chao1ORCID,Hu Zhenqi2ORCID,Wang Jin3,Jia Jitang4

Affiliation:

1. College of Civil Engineering, Henan University of Engineering, Zhengzhou 451191, China

2. School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China

3. Beijing Key Laboratory of Traffic Engineering, Beijing University of Technology, Beijing 100124, China

4. Institute of Land Reclamation and Ecological Restoration, China University of Mining and Technology (Beijing), Beijing 100083, China

Abstract

The dynamic subsidence characteristics due to super-large working face (SLWF) are the basis for further understanding of land ecology damage in fragile-ecological mining areas. In order to acquire the evolution characteristics of dynamic subsidence parameters and surface cracks, a series of field monitoring and comparisons with previous studies were conducted. The results indicate that (1) the subsidence trough is characterized with self-healing characteristics, including rapid formation of subsidence trough, the convergence of deformation, a steep trough edge, the smaller range of surface cracks; (2) the dynamic curves of dynamic subsidence parameters conformed to the exponential function curve with an inflection point when the SLWF advanced ca. critical dimension, which is the commonality of the dynamic subsidence characteristics; and (3) the optimized monitoring strategy for land ecology damage is recommended, and more attention should be paid to the quantitative prediction of root damage due to coal mining. The research results would benefit mining damage control and civil engineering protection in fragile-ecological mining areas.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Civil and Structural Engineering

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3