Control Method for Sampled-Data Systems with Multiple Channels Based on Deadband-Triggered Scheme

Author:

Liu Ying-Ying1ORCID,Chu Yun-kai2

Affiliation:

1. School of Information Engineering, Shenyang University, Shenyang, Liaoning 110044, China

2. Intelligent Detection and Equipment Department, Shenyang Institute of Automation Chinese Academy of Sciences, Shenyang, Liaoning 110016, China

Abstract

A new deadband-triggered scheme is proposed to investigate the control problems for sampled-data systems with multiple transmitting channels. Sampled-data systems simultaneously contain continuous-time and discrete-time signals, which make the systems hybrid. In the sampled-data systems with multiple channels, the every state signals are transmitting at different channels. The deadband communication constraint is adopted to reduce the usage of communication resources. When the difference between the previous value and the most present value is lager than a given threshold of deadband, then the node of channels transmits the most present value. Furthermore, by use of Lyapunov functional method and input delay approach, the new stability analysis and stabilization conditions for the sampled-data with multiple channels on the basis of deadband-triggered scheme are proposed. Numerical simulations and experiments show the validity and usefulness of the derived conditions. The proposed deadband-triggered scheme is beneficial to further reduce the load of the communication data.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Computer Networks and Communications,Information Systems

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Eigen-structure problem optimization for multirate, multi-input multi-output systems applied to a roll rate autopilot;International Journal on Smart Sensing and Intelligent Systems;2022-01-01

2. Deadband feedback-based scheduling approach for networked control system with variable sampling period;Transactions of the Institute of Measurement and Control;2021-01-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3