Analysis of Specific Perfluorohexane Sulfonate Isomers by Liquid Chromatography-Tandem Mass Spectrometry: Method Development and Application in Source Apportionment

Author:

Yang Liping1,Chen Xin1,Zhu Lingyan1,Wang Yixin1,Shan Guoqiang1ORCID

Affiliation:

1. Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China

Abstract

Characterization of perfluorohexane sulfonate (PFHxS) isomers, a chemical proposed for listing under the Stockholm Convention, is important to elucidate its environmental behaviors and sources. Optimized chromatographic separation coupled with monitoring of the characteristic fragments enabled the identification of four mono-substituted and two di-substituted branched PFHxS isomers. The transitions of molecular ions m/z 399 to the fragments m/z 80 (n-), m/z 169 (iso-), m/z 319 (1m-), m/z 80 (2m-), and m/z 180 (3m-) were selected for quantifying the mono-substituted isomers. Method accuracy of the established LC-MS/MS was verified by comparing the results of technical products with those determined by 19F-nuclear magnetic resonance (NMR). The developed method was then used to quantify the isomeric compositions of PFHxS in the perfluorooctane sulfonate (PFOS) industrial products which contained PFHxS as an impurity, as well as in several kinds of water samples, with the limits of detection for all isomers in the range of 4 to 30 pg/L. For the first time, a liquid chromatography-tandem mass spectrometry method was established to separate and quantify the PFHxS isomers. The isomeric profiling of water samples suggested that PFHxS in the waters was mainly due to the direct contamination of PFHxS rather than from PFOS contamination.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Computer Science Applications,Instrumentation,General Chemical Engineering,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3