Classification and Detection of Autism Spectrum Disorder Based on Deep Learning Algorithms

Author:

Alsaade Fawaz Waselallah1ORCID,Alzahrani Mohammed Saeed1ORCID

Affiliation:

1. College of Computer Science and Information Technology, King Faisal University, P.O. Box 4000, Al-Ahsa, Saudi Arabia

Abstract

Autism spectrum disorder (ASD) is a type of mental illness that can be detected by using social media data and biomedical images. Autism spectrum disorder (ASD) is a neurological disease correlated with brain growth that later impacts the physical impression of the face. Children with ASD have dissimilar facial landmarks, which set them noticeably apart from typically developed (TD) children. Novelty of the proposed research is to design a system that is based on autism spectrum disorder detection on social media and face recognition. To identify such landmarks, deep learning techniques may be used, but they require a precise technology for extracting and producing the proper patterns of the face features. This study assists communities and psychiatrists in experimentally detecting autism based on facial features, by using an uncomplicated web application based on a deep learning system, that is, a convolutional neural network with transfer learning and the flask framework. Xception, Visual Geometry Group Network (VGG19), and NASNETMobile are the pretrained models that were used for the classification task. The dataset that was used to test these models was collected from the Kaggle platform and consisted of 2,940 face images. Standard evaluation metrics such as accuracy, specificity, and sensitivity were used to evaluate the results of the three deep learning models. The Xception model achieved the highest accuracy result of 91%, followed by VGG19 (80%) and NASNETMobile (78%).

Funder

Deanship of Scientific Research, King Faisal University

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

Reference38 articles.

1. Brief Report: Prevalence of Pervasive Developmental Disorder in Brazil: A Pilot Study

2. Diagnostic and statistical manual of mental disorders (DSM –5);Apa–American Psychiatric Association,2020

3. Automatic autism spectrum disorder detection thanks to eye-tracking and neural network-based approach;R. Carette

4. Autistic disturbances of affective contact;L. Kanner;Nerv. Child,1943

Cited by 70 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3