Bandwidth Allocation of Cognitive Relay Networks with Energy Harvesting for Smart Grid

Author:

Li Yupeng12,Wang Zihao13,Luo Ling4ORCID,Chen Zhiyong1,Xia Bin1,Luo Hao5

Affiliation:

1. Shanghai Jiao Tong University, Shanghai 200240, China

2. State Grid Shanghai Shinan Electric Power Supply Company, Shanghai, China

3. Ant Financial Services Group, Hangzhou 310099, China

4. State Grid Shanghai Electric Power Research Institute, Shanghai 200437, China

5. State Grid Hunan Maintenance Company, Xinshao East Rd 339, Changsha 410000, China

Abstract

In this paper, we investigate an energy harvesting scheme in a smart grid based on the cognitive relay protocol, where a primary transmitter scavenges energy from the nature sources and then employs the harvested energy to forward the primary signal. Depending on the intensity of the energy harvesting from nature, a secondary user dynamically acts as a relay node to assist the primary transmission or does not. When the energy is not enough powerful to support the direct transmission between two primary users, the secondary users share the spectrum by assisting the primary transmission. For the relaying scheme, both amplify-and-forward (AF) and decode-and-forward (DF) protocols are investigated. We analytically obtain the exact transmission rates for both primary and secondary networks and derive the exact expressions of the system outage probabilities for both primary and secondary users in the smart grid. Moreover, we develop the analytically optimal bandwidth allocation strategy to maximize the total sum rate of the proposed scheme. Numerical results are presented to demonstrate the performance gain of the proposed scheme over the nonoptimal scheme.

Funder

State Grid Shanghai Municipal Electric Power Company

Publisher

Hindawi Limited

Subject

Computer Networks and Communications,Information Systems

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3