A Two-Fluid Conditional Averaging Paradigm for the Theory and Modeling of Turbulent Premixed Combustion

Author:

Zimont Vladimir L.1ORCID

Affiliation:

1. CRS4 Research Center POLARIS, 09010 Pula (CA), Italy

Abstract

This paper extends a recent theoretical study that was previously presented in the form of a brief communication (Zimont, C&F, 192, 2018, 221-223), in which we proposed a simple splitting method for the derivation of two-fluid conditionally averaged equations of turbulent premixed combustion in the flamelet regime, formulated more conveniently for applications involving unclosed equations without surface-averaged unknowns. This two-fluid conditional averaging paradigm avoids the challenge in the Favre averaging paradigm of modeling the countergradient scalar transport phenomenon and the unusually large velocity fluctuations in a turbulent premixed flame. It is a more suitable conceptual framework that is likely to be more convenient in the long run than the traditional Favre averaging method. In this article, we further develop this paradigm and pay particular attention to the problem of modeling turbulent premixed combustion in the context of a two-fluid approach. We formulate and analyze the unclosed differential equations in terms of the conditions of the Reynolds stresses τij,u, τij,b and the mean chemical source ρW¯, which are the only modeling unknowns required in our alternative conditionally averaged equations. These equations are necessary for the development of model differential equations for the Reynolds stresses and the chemical source in the advanced modeling and simulation of turbulent premixed combustion. We propose a simpler approach to modeling the conditional Reynolds stresses based on the use of the two-fluid conditional equations of the standard “k-ε” turbulence model, which we formulate using the splitting method. The main problem arising here is the appearance in these equations of unknown terms describing the exchange of the turbulent energy k and dissipation rate ε in the unburned and burned gases. We propose an approximate way to avoid this problem. We formulate a simple algebraic expression for the mean chemical source that follows from our previous theoretical analysis of the transient turbulent premixed flame in the intermediate asymptotic stage, in which small-scale wrinkles in the instantaneous flame surface reach statistical equilibrium, while the large-scale wrinkles remain in statistical nonequilibrium.

Publisher

Hindawi Limited

Subject

Energy Engineering and Power Technology,Condensed Matter Physics,Fuel Technology,General Chemical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3