Assessment of Groundnut Elite Lines under Drought Conditions and Selection of Tolerance Associated Traits

Author:

Bacharou Falke Achirou12,Hamidou Falalou12ORCID,Halilou Oumarou1,Harou Abdou1

Affiliation:

1. Department of Biology, Faculty of Science, Abdou Moumouni University of Niamey/Niger (UAM), BP 10662, Niamey, Niger

2. International Crops Research Institute for the Semi-Arid Tropics (ICRISAT) Sahelian Centre, BP 12404, Niamey, Niger

Abstract

Investigation of groundnut genotypes response to drought stress could contribute to improving drought tolerance and productivity. The objective of this study was to investigate new improved groundnut varieties response to drought stress under controlled conditions to identify tolerant materials and drought tolerance related traits. Thus, three experiments were conducted during off-seasons: two experiments in lysimetric system in 2017 and 2018 and one experiment in pots in 2017, to assess twelve varieties in a randomized complete block design with 2 water regimes and 4 replications. The water regimes were a full irrigation (WW) and an intermittent drought imposed at flowering times (WS). The investigated morphophysiological traits like transpiration, specific leaf area, root dry matter, root length density, and yield components decreased under WS. Significant year effect and genotypic variation were observed on most of investigated traits. Genotypes ICGV 92206 and ICGV 06319 showed low transpiration and revealed high pod yielding and early maturing genotypes under both water regimes, while genotypes ICGV 92035, ICGV 92195, ICGV 02038, ICGV 07211, and ICGV 07210 were drought-sensitive for pods production but produced high haulm under both water regimes. ICGV 92206, ICGV 02005, ICGV 02125, and ICGV 06319 showed higher yielding than 55-437 and Fleur 11. In this study, low total transpiration to control water loss, chlorophyll content, and root length density revealed drought tolerance associated traits for pod production, while TTW, TE, RDW, and RV revealed drought tolerance associated traits for fodder production.

Funder

CRP Grain legumes

Publisher

Hindawi Limited

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3