Optimization Calculation Method and Mathematical Modeling of Big Data Chaotic Model Based on Improved Genetic Algorithm

Author:

Zhang Zhicheng1ORCID,Zhang Yan2ORCID

Affiliation:

1. School of Science, Henan Institute of Technology, Xinxiang, Henan 453003, China

2. College of Computer and Information Engineering, Henan Normal University, Xinxiang, Henan 453007, China

Abstract

In order to find a chaotic trajectory sequence with strong global optimization ability to help the genetic selection of direction after the reversal of chemotaxis, an improved genetic algorithm based on chaos optimization is proposed by combining the characteristics of chaotic motion with the improved genetic algorithm. The optimal coverage problem in sensor networks can carry out fine optimization search on local areas. The results show that the overall trend of fitness and optimization efficiency is relatively stable. The optimization efficiency will be gradually improved with the continuous progress of time and genetics, and the error analysis will be reduced. This will greatly improve the impact of various adverse factors in the optimization process. In addition, the change rate of fitness is basically kept at a high change rate, which also reflects that the basic framework of the model is very excellent, and the whole algorithm structure and data processing are improved by 54%. The improved genetic algorithm proposed in this paper is used to adjust and optimize the controller parameters. When the uncertain parameters change greatly, the control system still has good control quality and strong robustness.

Publisher

Hindawi Limited

Subject

Analysis

Reference27 articles.

1. A regression model optimization method based on GA [J];X. Luo;Software Engineering and Applications,2021

2. An intelligent scheduling algorithm for resource management of cloud platform;H. Jin;Multimedia Tools and Applications,2020

3. Study on Generation Scheduling of Cascade Hydropower Stations Based on SAPSO

4. Optimization of task distribution scheme for two-stage iterative model based on GA [J];T. Qihua;Mechanical Design,2018

5. Quantum algorithms for process parallel flexible job shop scheduling

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3