Data Mining Technology Application in False Text Information Recognition

Author:

Wan Jie1ORCID,Cao Xue2,Yao Kun3ORCID,Yang Donghui2ORCID,Peng E.1,Cao Yong3ORCID

Affiliation:

1. Fundamental Space Science Research Center, Harbin Institute of Technology, Harbin, Heilongjiang Province 150001, China

2. School of Economics and Management, Southeast University, Nanjing, Jiangsu Province 211189, China

3. Department of Mechanical Engineering & Automation, Harbin Institute of Technology, Shenzhen Graduate School, Shenzhen, Guangdong Province 518055, China

Abstract

False information on the Internet is being heralded as serious social harm to our society. To recognize false text information, in this paper, an effective method for mining text features is proposed in the field of false drug advertisements. Firstly, the data of false drug advertisements and real drug advertisements were collected from the official websites to build a database of false and real drug advertisements. Secondly, by performing feature extraction on the text of drug advertisements, this work built a characteristic matrix based on the effective features and assigned positive or negative labels to the feature vector of the matrix according to whether it is a fake medical advertisement or not. Thirdly, this study trained and tested several different classifiers, selected the classification model with the best performance in identifying false drug advertisements, and found the key characteristics that can determine the classification. Finally, the model with the best performance was used to predict new false drug advertisements collected from Sina Weibo. In the case of identifying false drug advertisements, the classification effect of the support vector machine (SVM) classifier established on the feature set after feature selection was the most effective. The findings of this study can provide an effective method for the government to identify and combat false advertisements. This study has a certain reference significance in demonstrating the use of text data mining technology to identify and detect information fraud behavior.

Funder

Shenzhen Technology Projects

Publisher

Hindawi Limited

Subject

Computer Networks and Communications,Computer Science Applications

Reference24 articles.

1. The false advertising of specialty medical products under the lanham act;T. C. Morrison;Food Drug and Cosmetic Law Journal,1989

2. Treatment false advertisement in China: a tragedy

3. Deep learning

4. A survey on deep learning in medical image analysis

5. Detecting impact factor manipulation with data mining techniques

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3