Improving Dam Seepage Prediction Using Back-Propagation Neural Network and Genetic Algorithm

Author:

Zhang Xuan1ORCID,Chen Xudong1ORCID,Li Junjie1

Affiliation:

1. School of Water Conservancy Science and Engineering, Zhengzhou University, Zhengzhou 450001, China

Abstract

Statistical model is a traditional safety diagnostic model for dam seepage. It can hardly display the nonlinear relationship between dam seepage and the load sets and has the disadvantage of poor extension prediction. In this paper, the theories of Back Propagation Neural Network (BPNN) combined with Genetic Algorithm (GA) are applied to the seepage prediction model. Taking a typical dam in China as an example, the prediction results of BPNN-GA model and statistical model are compared with the monitoring values. The results show that the improved dam seepage model enhances the ability of nonlinear mapping and generalization and makes the seepage prediction more accurate and reasonable in the near future. According to the established criterion, the safety state of the dam in flood season is evaluated.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3