“Turn-On” Fluorescent Assay of Biothiols Based on Nitrogen-Rich Polymer Carbon Nanostrips and Its Application in Cell Imaging

Author:

Meng Xiangying123ORCID,Qiao Jinjuan123,Zhao Ronglan123,Chu Hairong123,Wang Ying123,Chen Xiangyu123,Yi Zhengjun123ORCID

Affiliation:

1. Department of Medical Laboratory, Weifang Medical University, Weifang 261053, Shandong, China

2. Key Laboratory of Clinical Laboratory Diagnostics in the University of Shandong Province, Weifang Medical University, Weifang 261053, Shandong, China

3. Institute of Nanomedicine Technology, Weifang Medical University, Weifang 261053, Shandong, China

Abstract

In this work, a sensitive and selective turn-on fluorimetric method has been developed for the determination of biothiols based on blocking Ag+-induced fluorescence quenching of nitrogen-rich polymer carbon nanostrips (NRPCNSs). Ag+ion can induce the fluorescence quenching of NRPCNSs due to the formation of nonfluorescent coordination complexes via robust Ag-N interaction. Once addition of biothiols, such as cysteine (Cys) and glutathione (GSH), Ag+ions prefer to interact with biothiols rather than NRPCNSs, which could be attribute to the formation of Ag-S bond, thus leading to effective fluorescent recovery of NRPCNSs. Under the optimized conditions, excellent linear relationships existed between the recovery degree of the NRPCNSs and the concentrations of Cys and GSH in the range of 0.05 μM to 10 μM and 0.2 μM to 30 μM, respectively. And, the limits of detection (LODs) for Cys and GSH are 16.5 nM and 65.1 nM, respectively. The detection system also shows high selectivity against other non-thiol amino acids. Moreover, the potential in practical applications of this proposed method has been demonstrated by detecting biothiols in human serum and fluorescence imaging of biothiols in living cells.

Funder

Natural Science Foundation of Shandong Province

Publisher

Hindawi Limited

Subject

General Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3