Impacts of Double V-Rings in the Heat Exchanger Duct on Heat Transfer and Flow Behaviors: A Numerical Study

Author:

Boonloi Amnart1ORCID,Jedsadaratanachai Withada2ORCID

Affiliation:

1. Department of Mechanical Engineering Technology, College of Industrial Technology, King Mongkut’s University of Technology North Bangkok, Bangkok 10800, Thailand

2. Department of Mechanical Engineering, School of Engineering, King Mongkut’s Institute of Technology Ladkrabang, Bangkok 10520, Thailand

Abstract

The impacts of the double V-rings (DVR) in the heat exchanger duct (HED) on heat transfer and flow structures are numerically analyzed. The general configuration of the DVR is called “type I,” while the discrete DVR can be split into two structures, which are called “types II and III.” The influences of the DVR sizes, DVR types and flow directions on heat transfer rate, friction loss, and thermohydraulic performance are considered. The Reynolds numbers in the range around 100–2000 (laminar regime at the entrance condition) are selected for the present investigation. The numerical problem of the HED installed with the DVR is solved with the finite volume method (a commercial code). The flow structure, heat transfer mechanism, and performance analysis in the HED that fitted the DVR are reported. The flow and heat transfer profiles in the HED fitted with the DVR are an important knowledge to develop the thermohydraulic performance of compact heat exchangers. As the numerical results, it is seen that the heat transfer ability of the tested duct improves around 1.05–16.62 times upper than the smooth duct. Additionally, the greatest value of the thermal enhancement factor in the HED fitted with the DVR is seen to be around 4.17 at a/H = 0.025, b/H = 0.10, Re = 2000, and V-upstream direction for the type I.

Funder

King Mongkut’s University of Technology North Bangkok

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3