MRI-Based Quantification of Magnetic Susceptibility in Gel Phantoms: Assessment of Measurement and Calculation Accuracy

Author:

Olsson Emma1ORCID,Wirestam Ronnie1ORCID,Lind Emelie1

Affiliation:

1. Department of Medical Radiation Physics, Lund University, Skåne University Hospital Lund, 22185 Lund, Sweden

Abstract

The local magnetic field inside and around an object in a magnetic resonance imaging unit depends on the magnetic susceptibility of the object being magnetized, in combination with its geometry/orientation. Magnetic susceptibility can thus be exploited as a source of tissue contrast, and susceptibility imaging may also become a useful tool in contrast agent quantification and for assessment of venous oxygen saturation levels. In this study, the accuracy of an established procedure for quantitative susceptibility mapping (QSM) was investigated. Three gel phantoms were constructed with cylinders of varying susceptibility and geometry. Experimental results were compared with simulated and analytically calculated data. An expected linear relationship between estimated susceptibility and concentration of contrast agent was observed. Less accurate QSM-based susceptibility values were observed for cylindrical objects at angles, relative to the main magnetic field, that were close to or larger than the magic angle. Results generally improved for large objects/high spatial resolution and large volume coverage. For simulated phase maps, accurate susceptibility quantification by QSM was achieved also for more challenging geometries. The investigated QSM algorithm was generally robust to changes in measurement and calculation parameters, but experimental phase data of sufficient quality may be difficult to obtain in certain geometries.

Funder

Vetenskapsrådet

Publisher

Hindawi Limited

Subject

Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3