Affiliation:
1. College of Materials Science and Engineering, Xi’an University of Science and Technology, Xi’an 710054, China
2. School of Civil Engineering and Architecture, Anhui University of Technology, Ma’anshan 243032, China
Abstract
The large-scale and resourceful utilization of solid waste is one of the important ways of sustainable development. The big data brings hope for further development in all walks of life, because huge amounts of data insist on the principle of “turning waste into treasure”. The steel big data has been taken as the research object in this paper. Firstly, a big data collection and storage system has been set up based on the Hadoop platform. Secondly, the steel slag prediction model based on the convolution neural network (CNN) is established. The material data of steelmaking, the operation data of steelmaking process, and the data of steel slag composition are put into the model from the Hadoop platform, and the prediction of the slag composition is further realized. Then, the alternatives for resource recovery are obtained according to the predicted composition of the steel slag. And considering the three aspects of economic feasibility, resource suitability, and environmental acceptance, the comprehensive evaluation system based on AHP is established to realize the recommendation of the optimal resource approach. Finally, taking a steel plant in Hebei as an example, the alternatives according to the prediction of the composition of steel slag are blast furnace iron-making, recycling waste steel, and cement admixture. The comprehensive evaluation values of the three resources are 0.48, 0.57, and 0.76, respectively, and the optimized resource of the steel slag produced by the steel plant is used as the cement admixture.
Funder
Xi'an University of Science and Technology
Subject
Multidisciplinary,General Computer Science
Cited by
73 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献