Influence of Bidirectional Impact Loading on Anomalously Low-Friction Effect in Block Rock Media

Author:

Li Liping1ORCID,Li Weijun1ORCID,Tang Jupeng1,Lv Jiaqing1

Affiliation:

1. School of Mechanics and Engineering, Liaoning Technical University, Fuxin, Liaoning 123000, China

Abstract

The anomalously low-friction effect is a key scientific problem in deep mining. The deep coal rock media is usually a block structure with joint fracture. When the deep block coal rock is subjected to repeated strong dynamic impact caused by long-term excavation activities, the anomalously low-friction effect will occur, resulting in dynamic disasters such as rock bursts. Taking granite block rock media as research object and using bidirectional impact loading to simulate the dynamic disturbance of rock media, a numerical model was established. The vertical acceleration and the horizontal displacement on working block media were defined as the characteristic parameters of the anomalously low-friction effect. The effects of delay time and horizontal impact loading amplitude and frequency on the characteristic parameters under bidirectional impact loading were examined by numerical simulation. The generation and variation of the anomalously low-friction effect of block rock media subjected to bidirectional impact loading were presented. The results show that the delay time has a significant effect to the vertical acceleration amplitude and horizontal displacement on the working block media under bidirectional impact loading. There exists a delay time threshold; when reach to the threshold, quasiresonance and the anomalously low-friction effect on block media will easily occur. With the increase in horizontal impact amplitude, the residual horizontal displacement on the working block media also increases by power function, while it decreases by power function with the increase of horizontal impact loading frequency. Finally, this study denotes that it is great significance to investigate the bidirectional impact loading in order to capture the mechanism of anomalously low-friction effect.

Funder

National Key R&D Program

Publisher

Hindawi Limited

Subject

Civil and Structural Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3