Unsupervised Detection and Clustering of Malicious TLS Flows

Author:

Gomez Gibran1ORCID,Kotzias Platon2,Dell’Amico Matteo3ORCID,Bilge Leyla2,Caballero Juan4ORCID

Affiliation:

1. IMDEA Software Institute, Universidad Politécnica de Madrid, Madrid, Spain

2. Norton Research Group, Paris, France

3. University of Genoa, Genoa, Italy

4. IMDEA Software Institute, Madrid, Spain

Abstract

Malware abuses TLS to encrypt its malicious traffic, preventing examination by content signatures and deep packet inspection. Network detection of malicious TLS flows is important, but it is a challenging problem. Prior works have proposed supervised machine learning detectors using TLS features. However, by trying to represent all malicious traffic, supervised binary detectors produce models that are too loose, thus introducing errors. Furthermore, they do not distinguish flows generated by different malware. On the other hand, supervised multiclass detectors produce tighter models and can classify flows by the malware family but require family labels, which are not available for many samples. To address these limitations, this work proposes a novel unsupervised approach to detect and cluster malicious TLS flows. Our approach takes input network traces from sandboxes. It clusters similar TLS flows using 90 features that capture properties of the TLS client, TLS server, certificate, and encrypted payload and uses the clusters to build an unsupervised detector that can assign a malicious flow to the cluster it belongs to, or determine if it is benign. We evaluate our approach using 972K traces from a commercial sandbox and 35M TLS flows from a research network. Our clustering shows very high precision and recall with an F1 score of 0.993. We compare our unsupervised detector with two state-of-the-art approaches, showing that it outperforms both. The false detection rate of our detector is 0.032% measured over four months of traffic.

Funder

Comunidad de Madrid

Publisher

Hindawi Limited

Subject

Computer Networks and Communications,Information Systems

Reference43 articles.

1. TLS beyond the browser: combining end host and network data to understand application behavior;B. Anderson

2. Coming of age: a Longitudinal Study of TLS Deployment, Longitudinal Study of TLS Deployment;P. Kotzias

3. Nearly a Quarter of Malware Now Communicates Using TLS;L. Nagy,2020

4. Man-in-the-Middle Attack to the HTTPS Protocol

5. Identifying encrypted malware traffic with contextual flow data;A. Blake

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3