Nonlinear Dynamic Analysis of Solution Multiplicity of Buoyancy Ventilation in Two Vertically Connected Open Cavities with Unequal Heights

Author:

Wang Yuxing1ORCID,Wei Chunyu1

Affiliation:

1. School of Architecture, Hunan University, Changsha 410082, Hunan, China

Abstract

Solution multiplicity of natural ventilation in buildings is of much importance for personnel safety and ventilation design. In this paper, a new mathematical model of buoyancy pressure ventilation for two vertically connected open cavities is presented. Compared with the previous published papers studying two vertically connected open cavities with equal heights and hot source E2 < 0 in the upper room, we study two vertically connected open cavities with unequal heights and hot source E2 < 0 or E2 > 0 in the upper room. By solving and analyzing the equilibrium points and characteristic roots of the differential equations, we analyze the stability of two systems with upward flow pattern and downward pattern and obtain the criteria to determine the stability and existence of solutions for two scenarios. According to these criteria, the multiple steady states of buoyancy ventilation in two vertically connected open cavities with unequal heights and variable strength of hot sources can be obtained. These criteria can be used to design buoyancy ventilation or natural exhaust ventilation systems in two vertically connected open cavities. Compared with two stable states of buoyancy ventilation existing in two vertically connected open cavities with equal heights in the previously published papers, we find that more stable states and unstable states of buoyancy ventilation exist in two vertically connected open cavities with unequal heights in our paper. Finally, bifurcation diagrams and the phase portraits for the two scenarios are given.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Multidisciplinary,General Computer Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Mathematical Model for SC-Assisted Stack Ventilation in Multi-storey Buildings;Solar Chimney Applications in Buildings;2024

2. A Mathematical Framework of Modeling SC-Assisted Stack Ventilation;Solar Chimney Applications in Buildings;2024

3. A review on recent studies of buoyancy effect;1ST INTERNATIONAL POSTGRADUATE CONFERENCE ON OCEAN ENGINEERING TECHNOLOGY AND INFORMATICS 2021 (IPCOETI 2021);2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3