Role of Some Natural Antioxidants in the Modulation of Some Proteins Expressions against Sodium Fluoride-Induced Renal Injury

Author:

Alhusaini Ahlam M.1,Faddah Laila M.1,El Orabi Naglaa F.12,Hasan Iman H.1ORCID

Affiliation:

1. Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia

2. Department of Pharmacology and Toxicology, Suez Canal University, Ismailia, Egypt

Abstract

Background. The aim of the present work is to find the effects of N-acetylcysteine (NAC) and/or thymoquinone (THQ) in the protection against acute renal injury induced by sodium fluoride (NaF).Method. Rats were distributed into five groups: G1 was normal (control), G2 was intoxicated with 10mg/kg NaF i.p., G3 was treated with 10mg THQ /kg, G4 was treated with 20mg NAC /kg, and G5 was treated with a combination of THQ and NAC. The previous treatments were given daily along with NaF for four weeks orally.Result. Rats intoxicated with NaF showed a significant increase in serum urea, creatinine, uric acid, renal lipid peroxidation, nitric oxide, and TNF-αlevels, whereas the activity of superoxide dismutase (SOD) and glutathione (GSH) level was reduced. The expressions of Toll-like receptor-4 (TLR4), Lipocalin, vascular adhesion molecule-1(VCAM-1), and BAX proteins were upregulated, whereas Bcl-2 and NF-E2-related factor 2 (Nrf2) proteins expressions were downregulated. DNA fragmentation was also amplified. Histological analysis revealed that NaF caused a destructive renal cortex in the form of the glomerular corpuscle, the obliterated proximal and distal convoluted tubules, vacuolization in tubular cells focal necrosis, and cell infiltration. THQ and NAC supplementation counteracted NaF-induced nephrotoxicity as reflected by the increase in renal GSH and SOD. THQ and NAC ameliorated all the altered proteins expressions, improved renal architecture, and declined DNA fragmentation.Conclusion. The role of oxidative stress in the enhancement of NaF toxicity suggested the renoprotective effects of NAC and THQ against the toxicity of fluoride via multiple mechanisms.

Funder

Deanship of Scientific Research, King Faisal University

Publisher

Hindawi Limited

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3