Correlation Analysis of Gene and Radiomic Features in Colorectal Cancer Liver Metastases

Author:

Wang Xuehu123ORCID,Li Nie123ORCID,Guo Haifeng123ORCID,Yin Xiaoping4ORCID,Zheng Yongchang5ORCID

Affiliation:

1. College of Electronic and Information Engineering, Hebei University, Baoding 071002, China

2. Research Center of Machine Vision Engineering & Technology of Hebei Province, Baoding 071002, China

3. Key Laboratory of Digital Medical Engineering of Hebei Province, Baoding 071002, China

4. Affiliated Hospital of Hebei University, Baoding 071000, China

5. Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS&PUMC), Beijing 100730, China

Abstract

Colorectal cancer liver metastasis (CRLM) was one of the cancers with high mortality. Clinically, the target point was determined by invasive detection, which increased the suffering of patients and the cost of treatment. If the target point was found through the relationship between early radiomic information and genetic information, it was expected to assist doctors in diagnosing disease, formulating treatment plans, and reducing the pain and burden of patients. In this study, gene coexpression analysis and hub gene mining were first performed on the gene data; secondly, quantitative radiomic features were extracted from CT-enhanced radiomic data to obtain features highly correlated with CRLM; and finally, we analyzed the relationship between gene features and radiomic feature correlations by establishing a link between early radiomic features and gene sequencing and finding highly correlated expressions. This experiment demonstrated that radiomic features could be used to mine gene attributes. Based on the four previously identified genes (NRAS, KRAS, BRAF, and PIK3CA), we identified two novel genes, MAPK1 and STAT1, highly associated with CRLM. There were specific correlations between these 6 genes and radiomic features (shape_elongation, glcm, glszm, firstorder_10percentile, gradient, exponent_firstorder_Range, and gradient_glszm_SmallAreaLowGrayLevel). Therefore, this paper established the correlation between radiomic features and genes, and through radiomic features, we could find the genes associated with them, which was expected to achieve noninvasive prediction of liver metastasis.

Funder

Hebei Provincial Government Funded Provincial Medical Talents Project

Publisher

Hindawi Limited

Subject

Applied Mathematics,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,Modeling and Simulation,General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3