Research Progress on High-Intermediate Frequency Extension Methods of SEA

Author:

Su Jintao1ORCID,Zheng Ling1ORCID,Deng Zhaoxiang12,Jiang Yuhan1

Affiliation:

1. State Key Laboratory of Mechanical Transmission, Chongqing University, Chongqing 400044, China

2. State Key Laboratory of Vehicle NVH and Safety Technology, Chongqing 401122, China

Abstract

Statistical energy analysis (SEA) can accurately describe the average vibration characteristics through system energy flow and transmission feedback. It is a powerful tool to solve the problem of high-frequency acoustics-vibration. SEA is widely used in vehicles, ships, aviation, and other transportation engineering fields. However, the expansion of SEA, based on the assumption of modal equipartition and weak coupling, is limited to the intermediate frequency. Although the SEA basic theory can be extended by relaxing the hypothesis conditions or the analysis of the medium-frequency acoustics-vibration can be carried out using the finite element method (FEM) and SEA mixing method, there are still many challenges associated with these options. To improve the basic theory of SEA and knowledge of intermediate frequency extension methods, as well as attract the attention of domestic scholars, this paper describes classical SEA and intermediate frequency extension methods. First, coupling loss factor (CLF) error propagation and parameter acquisition in classical SEA are introduced, and the three relative error calculation methods of CLF are compared. Then, the method of obtaining parameters is described from three aspects of energy transfer, input load, and modal density. Second, SEA intermediate frequency extension technology (experimental statistical energy analysis (ESEA), finite element statistical energy analysis (FE-SEA), statistical modal energy distribution analysis (SMEDA), and waveguide analysis (WGA)) are introduced. Neutron structure assembly and modeling, interval and mixed interval analysis, interval variable and mixed interval variable response are also described, so as to justify the development of a hybrid, large-scale interval algorithm. Finally, the engineering application of the above method is introduced, the limitations and shortcomings of SEA and intermediate frequency extension methods are reviewed, and unsolved problems are further discussed.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3