Prototype of the Near-Infrared Spectroscopy Expert System for Particleboard Identification

Author:

Sandak Anna12ORCID,Sandak Jakub123ORCID,Janiszewska Dominika4,Hiziroglu Salim5,Petrillo Marta1,Grossi Paolo1

Affiliation:

1. CNR-IVALSA Trees and Timber Institute, 38010 San Michele all’Adige, Italy

2. InnoRenew CoE, 6310 Izola, Slovenia

3. University of Primorska, Faculty of Mathematics, Natural Sciences and Information Technology, 6000 Koper, Slovenia

4. Composite Wood Products Department, Wood Technology Institute, Poznan, Poland

5. Natural Resource Ecology and Management, Oklahoma State University, Stillwater, Oklahoma, USA

Abstract

The overall goal of this work was to develop a prototype expert system assisting quality control and traceability of particleboard panels on the production floor. Four different types of particleboards manufactured at the laboratory scale and in industrial plants were evaluated. The material differed in terms of panel type, composition, and adhesive system. NIR spectroscopy was employed as a pioneer tool for the development of a two-level expert system suitable for classification and traceability of investigated samples. A portable, commercially available NIR spectrometer was used for nondestructive measurements of particleboard panels. Twenty-five batches of particleboards, each containing at least three independent replicas, was used for the original system development and assessment of its performance. Four alternative chemometric methods (PLS-DA, kNN, SIMCA, and SVM) were used for spectroscopic data classification. The models were developed for panel recognition at two levels differing in terms of their generality. In the first stage, four among twenty-four tested combinations resulted in 100% correct classification. Discrimination precision with PLS-DA and SVMC was high (>99%), even without any spectra preprocessing. SNV preprocessed spectra and SVMC algorithm were used at the second stage for panel batch classification. Panels manufactured by two producers were 100% correctly classified, industrial panels produced by different manufacturing plants were classified with 98.9% success, and the experimental panels manufactured in the laboratory were classified with 63.7% success. Implementation of NIR spectroscopy for wood-based product traceability and quality control may have a great impact due to the high versatility of the production and wide range of particleboards utilization.

Funder

European Cooperation in Science and Technology

Publisher

Hindawi Limited

Subject

Spectroscopy,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3