Machine Learning for Estimating Leaf Dust Retention Based on Hyperspectral Measurements

Author:

Jing Wenlong123ORCID,Zhou Xia123,Zhang Chen1234,Wang Chongyang123,Jiang Hao123

Affiliation:

1. Guangzhou Institute of Geography, Guangzhou, China

2. Key Laboratory of Guangdong for Utilization of Remote Sensing and Geographical Information System, Guangzhou, China

3. Guangdong Open Laboratory of Geospatial Information Technology and Application, Guangzhou, China

4. Shandong University of Science and Technology, Shandong, China

Abstract

Hyperspectral sensors provide detailed information for dust retention content (DRC) estimation. However, rich hyperspectral data are not fully utilized by traditional image analysis techniques. We integrated several recently developed machine learning algorithms to estimate DRC on plant leaves using the spectra measured by the ASD FieldSpec 3. The experiments were carried out on three common green plants of southern China. The important hyperspectral variables were first identified by applying the random forest (RF) algorithm. Three estimation models were then developed using the support vector machine (SVM), classification and regression tree (CART), and RF algorithms. The results showed that the increase in dust retention contents on plant leaves enhanced their reflectance in the visible wavelength but weakened their reflectance in the infrared wavelength. Wavelengths in the ranges of 450–500 nm, 550–600 nm, 750–1000 nm, and 1100–1300 nm were identified as important variables using the RF algorithm and were used to estimate the DRC. The comparison of the three machine learning techniques for DRC estimation confirmed that the SVM and RF models performed well because their estimations were similar to the measured DRC. Specifically, the average R2 for SVM and RF model are 0.85 and 0.88. The technical approach of this study proved to be a successful illustration of using hyperspectral measurements to estimate the DRC on plant leaves. The findings of this study can be applied to monitor the DRC on leaves of other plants and can also be integrated with other types of spectral data to measure the DRC at a regional scale.

Funder

Forest Science and Technology Innovation in Guangdong

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Instrumentation,Control and Systems Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3