Evaluation of Performance of Different Methods in Detecting Abrupt Climate Changes

Author:

Zhao Chunyu12,Cui Yan2,Zhou Xiaoyu2,Wang Ying2

Affiliation:

1. Nanjing University of Information Sciences & Technology, Nanjing 210044, China

2. Liaoning Province Meteorological Bureau, Shenyang 110001, China

Abstract

We compared and evaluated the performance of five methods for detecting abrupt climate changes using a time series with artificially generated abrupt characteristics. Next, we analyzed these methods using annual mean surface air temperature records from the Shenyang meteorological station. Our results show that the movingt-test (MTT), Yamamoto (YAMA), and LePage (LP) methods can correctly and effectively detect abrupt changes in means, trends, and dynamic structure; however, they cannot detect changes in variability. We note that the sample size of the subseries used in these tests can affect their results. When the sample size of the subseries ranges from one-quarter to three-quarters of the jump scale, these methods can effectively detect abrupt changes; they perform best when the sample size is one-half of the jump scale. The Cramer method can detect abrupt changes in the mean and trend of a series but not changes in variability or dynamic structure. Finally, we found that the Mann-Kendall test could not detect any type of abrupt change. We found no difference in the results of any of the methods following removal of the mean, creation of an anomaly series, or normalization. However, detrending and study period selection affected the results of the Cramer and Mann-Kendall methods; in the latter case, they could lead to a completely different result.

Funder

Science and Technology Department of Liaoning Province

Publisher

Hindawi Limited

Subject

Modelling and Simulation

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3