Stage Spectrum Sensing Technique for Cognitive Radio Network Using Energy and Entropy Detection

Author:

Usman Mustefa Badri1ORCID,Singh Ram Sewak1,Rajkumar S1

Affiliation:

1. Department of Electronics and Communication Engineering, School of Electrical Engineering and Computing, Adama Science and Technology University, P.O.Box:1888, Adama, Ethiopia

Abstract

The radio spectrum is one of the world’s most highly regulated and limited natural resources. The number of wireless devices has increased dramatically in recent years, resulting in a scarcity of available radio spectrum due to static spectrum allocation. However, many studies on static allocation show that the licensed spectrum bands are underutilized. Cognitive radio has been considered as a viable solution to the issues of spectrum scarcity and underutilization. Spectrum sensing is an important part in cognitive radio for detecting spectrum holes. To detect the availability or unavailability of primary user signals, many spectrum sensing techniques such as matched filter detection, cyclostationary feature detection, and energy detection have been developed. Energy detection has gained significant attention from researchers because of its ease of implementation, fast sensing time, and low computational complexity. Conventional detectors’ performance degrades rapidly at low SNR due to their sensitivity to the uncertainty of noise. To mitigate noise uncertainty, Shannon, Tsallis, Kapur, and Renyi entropy-based detection has been used in this study, and their performances are compared to choose the best performer. According to the comparison results, the Renyi entropy outperforms other entropy methods. In this study, two-stage spectrum sensing is proposed using energy detection as the coarse stage and Renyi entropy-based detection as the fine stage to improve the performance of single-stage detection techniques. Furthermore, the performance comparison among conventional energy detection, entropy-based detection, and the proposed two-stage techniques over AWGN channel are performed. The parameters such as probability of detection, false alarm probability, miss-detection probability, and receiver operating characteristics curve are used to evaluate the performance of spectrum sensing techniques. It has been shown that the proposed two-stage sensing technique outperforms single-stage energy detection and Renyi entropy-based detection by 11 dB and 1 dB, respectively.

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Energy Engineering and Power Technology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3