A Prioritizing Interdiction Surface-Based Vulnerability Remediation Composite Metric for Industrial Control Systems

Author:

Wang Zibo12,Zhang Yaofang12,Liu Zhiyao3,Li Tongtong12,Chen Yilu12,Yang Chen4ORCID,Wang Bailing125ORCID,Liu Zhusong67

Affiliation:

1. School of Computer Science and Technology, Harbin Institute of Technology, Weihai 264209, China

2. School of Cyber Science and Technology, Harbin Institute of Technology, Harbin 150001, China

3. China Industrial Control Systems Cyber Emergency Response Team, Beijing 100040, China

4. Institute of Software, Chinese Academy of Sciences, Beijing 100190, China

5. Weihai Cyberguard Technologies Co. Ltd, Weihai 264209, China

6. School of Computer Science and Technology, Anhui University of Technology, Anhui 243002, China

7. School of Computer Science, Guangdong University of Technology, Guangzhou 510006, China

Abstract

Recently, industrial control system (ICS) has gradually been a primary attack target. The main reason is that increasing vulnerabilities exposed provide opportunities for launching multistep and multihost attacks to breach security policies. To that end, vulnerability remediations are crucial for the ICS. However, there exist three problems to be tackled in a sound way. First of all, it is impractical to remove all vulnerabilities for preventing the multistep and multihost attacks in the consideration of the actual ICS demands. Secondly, ranking vulnerability remediations lacks a guidance. The last problem is that there is a lack of a metric for qualifying the security level after each remediation. In this paper, an ICS-oriented assessment methodology is proposed for the vulnerability remediations. It consists of three phases corresponding to the above problems, including (1) prioritizing Interdiction Surfaces, (2) ranking vulnerability remediations, and (3) calculating composite metrics. The Interdiction Surface describes a minimum set of vulnerabilities of which the complete removal may interdict all discovered attack paths in the system. Particularly, it innovates to take the urgent security demands of the ICS into account. Subsequently, ranking the vulnerability in the optimal Interdiction Surface is conducive to guide the remediations with the priority. A composite metric is ultimately given to assess the security level after vulnerability remediations. The effectiveness of the proposed methodology is validated in an ICS scenario which is similar to the real-world practice. Results show that the entire procedure is suitable for the context of the ICS. Simultaneously, the composite metric enhances both the comprehensiveness and the compatibility in contrast with attack path-based metrics. Hence, it overcomes the shortcomings when they are used in isolation.

Funder

National Key R&D Program of China

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3