A Hybrid Approach Based on Deep CNN and Machine Learning Classifiers for the Tumor Segmentation and Classification in Brain MRI

Author:

Haq Ejaz Ul12ORCID,Jianjun Huang1ORCID,Huarong Xu2ORCID,Li Kang1,Weng Lifen2

Affiliation:

1. Guangdong Key Laboratory of Intelligent Information Processing, School of Electronics and Information Engineering, Shenzhen University, China

2. School of Computer and Information Engineering, Xiamen University of Technology, China

Abstract

Conventional medical imaging and machine learning techniques are not perfect enough to correctly segment the brain tumor in MRI as the proper identification and segmentation of tumor borders are one of the most important criteria of tumor extraction. The existing approaches are time-consuming, incursive, and susceptible to human mistake. These drawbacks highlight the importance of developing a completely automated deep learning-based approach for segmentation and classification of brain tumors. The expedient and prompt segmentation and classification of a brain tumor are critical for accurate clinical diagnosis and adequately treatment. As a result, deep learning-based brain tumor segmentation and classification algorithms are extensively employed. In the deep learning-based brain tumor segmentation and classification technique, the CNN model has an excellent brain segmentation and classification effect. In this work, an integrated and hybrid approach based on deep convolutional neural network and machine learning classifiers is proposed for the accurate segmentation and classification of brain MRI tumor. A CNN is proposed in the first stage to learn the feature map from image space of brain MRI into the tumor marker region. In the second step, a faster region-based CNN is developed for the localization of tumor region followed by region proposal network (RPN). In the last step, a deep convolutional neural network and machine learning classifiers are incorporated in series in order to further refine the segmentation and classification process to obtain more accurate results and findings. The proposed model’s performance is assessed based on evaluation metrics extensively used in medical image processing. The experimental results validate that the proposed deep CNN and SVM-RBF classifier achieved an accuracy of 98.3% and a dice similarity coefficient (DSC) of 97.8% on the task of classifying brain tumors as gliomas, meningioma, or pituitary using brain dataset-1, while on Figshare dataset, it achieved an accuracy of 98.0% and a DSC of 97.1% on classifying brain tumors as gliomas, meningioma, or pituitary. The segmentation and classification results demonstrate that the proposed model outperforms state-of-the-art techniques by a significant margin.

Funder

Fujian Science and Technology Plan Project

Publisher

Hindawi Limited

Subject

Applied Mathematics,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,Modeling and Simulation,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3