Seismic Performance of an Underground Structure with an Inerter-Based Isolation System

Author:

Chen Qingjun12,Zhang Luqi12ORCID,Zhang Ruifu12ORCID,Pan Chao3ORCID

Affiliation:

1. State Key Laboratory of Disaster Reduction in Civil Engineering, Tongji University, Shanghai 200092, China

2. Department of Disaster Mitigation for Structures, Tongji University, Shanghai 200092, China

3. College of Civil Engineering, Yantai University, Yantai 264005, China

Abstract

Existing isolation methods for seismic control of underground structures show that increasing the energy dissipation effect for isolation bearings tends to unfavorably add the relative deformation and force responses of the isolated columns. Exploring high-performance energy dissipaters is necessary for simultaneously controlling multiple performance indices of isolated underground structures. In this study, an inerter-based isolation system installed in a subway station is proposed to isolate columns and dissipate input energy benefited by its mass amplification and damping enhancement mechanisms. The inerter is a two-terminal relative-acceleration-related inertial device that can adjust structural inertial properties but scarcely increase actual physical mass. A method for the development of the user-defined inerter element is proposed and used because of the absence of inerter elements in existing finite element software. Then, the soil-underground structure model is established to simulate a typical subway station with the inerter-based isolation system used at the top of the column. Parameter studies together with design cases are conducted under horizontal and vertical input excitations with different frequency components. The results show that the inerter-based system can simultaneously control multiple performance indices of the subway station, including the relative deformation, shear force, bending moment of the central column, and the horizontal relative deformation of the isolation layer. Meanwhile, the inerter-based system can realize the high-efficiency energy dissipation control effect with low demands for damping due to the damping enhancement. A large proportion of energy is first absorbed by the inerter and then reserved by the kinetic and potential energy of the inerter-based system. Therefore, the proposed inerter-based isolation system is effective for enhancing columns and reducing lateral dynamic responses, which can prevent underground structures from collapsing.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Mechanics of Materials,Building and Construction,Civil and Structural Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A comprehensive review of resilience of urban metro systems: A perspective from earthquake engineering;Tunnelling and Underground Space Technology;2024-10

2. A Critical Review on Inertially-Amplified Passive Vibration Control Devices;Archives of Computational Methods in Engineering;2024-01-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3