Modeling the Performance of Faulty Linear Wireless Sensor Networks

Author:

Mohamed Nader1ORCID,Al-Jaroodi Jameela2ORCID,Jawhar Imad1

Affiliation:

1. The College of Information Technology, UAE University, P.O. Box 15551, Al Ain, UAE

2. University of Pittsburgh, Pittsburgh, PA 15260, USA

Abstract

Wireless sensor networks (WSNs) are used to monitor long linear structures such as pipelines, rivers, railroads, international borders, and high power transmission cables. In this case, a special type of WSN called linear wireless sensor network (LSN) is used. One of the main challenges of using LSNs is the reliability of the connections across the nodes. Faults in a few contiguous nodes may cause the creation of holes (segments where nodes on either end of them cannot reach each other) which will result in dividing the network into multiple disconnected segments. As a result, sensor nodes that are located between holes may not be able to deliver their sensed information which negatively affects the network's sensing coverage. In this paper, we provide an analysis of the different types of node faults in uniformly deployed LSNs and study their negative impact on the sensing coverage. We develop an analytical model to estimate the sensing coverage in uniformly deployed sensors LSNs in the presence of node faults. We verify the correctness of the developed model by conducting a number of simulation experiments to compare both calculated and simulated results under different network configurations and fault scenarios. In addition, we use this model to demonstrate three design applications that meet with specific performance requirements.

Funder

UAE University

Publisher

SAGE Publications

Subject

Computer Networks and Communications,General Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3